Weighted composition operators between vector-valued Lipschitz function spaces
نویسندگان
چکیده
منابع مشابه
Weighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملWeighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملAutomatic Continuity and Weighted Composition Operators between Spaces of Vector-valued Differentiable Functions
Let E and F be Banach spaces. It is proved that if Ω and Ω are open subsets of R and R , respectively, and T is a linear biseparating map between two spaces of differentiable functions A(Ω, E) and A(Ω, F ), then p = q, n = m, and there exist a diffeomorphism h of class C from Ω onto Ω, and a map J : Ω → L(E, F ) of class s−C such that for every y ∈ Ω and every f ∈ A(Ω, E), (Tf)(y) = (Jy)(f(h(y)...
متن کاملWeighted Composition Operators on Weighted Spaces of Vector-valued Analytic Functions
Let V be an arbitrary system of weights on an open connected subset G of CN (N ≥ 1) and let B (E) be the Banach algebra of all bounded linear operators on a Banach space E. Let HVb (G, E) and HV0 (G, E) be the weighted locally convex spaces of vector-valued analytic functions. In this paper, we characterize self-analytic mappings φ : G → G and operator-valued analytic mappings Ψ : G → B (E) whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2013
ISSN: 1735-8787
DOI: 10.15352/bjma/1358864548